
February 1998 The Delphi Magazine 59

IKE'S

CornerM
Welcome to my new column, a

corner for technical gossip,
tips, ideas and anything else that I
think you might find useful. I hope
that what you read will stimulate
and/or provoke you into feedback,
allowing me to present your views
in subsequent issues. Following a
bit of Editor arm-twisting, I am able
to offer a £25 prize to the best
contribution received each month.

As a start, I am interested in
Delphi knowledge that took longer
to grasp than you would have
expected: see the item on indexed
properties for one that tripped me
up for a long while. Also, am I the
only one to have abandoned the
with statement in Delphi 3, and if
I’m not, what do you use instead? I
will discuss this in the next issue.

Indexed Properties
Since the advent of Delphi 3 inter-
faces, I have been making much
more use of properties and, in par-
ticular, indexed properties. A few
weeks ago, a light bulb went off in
my head and I suddenly realised
that the word ‘indexed’ had
blinded me to the true nature of the
beasts: they are better described
as ‘parameterised properties’ as
the index or indexes are actually
just additional parameters for the
Get/Set methods driven by the
property, they don’t have to be
indexes in the classical sense at all.
Consider the following statements:

Type
TCaptionType =
(ctNormal, ctAbbrev,
ctUpper,ctCapital);

property Caption[
const value: string;
opt: TCaptionType]: string
read GetCaption;

Assuming that Foo is an instance of
the class TFoo containing the above

property, then you can issue
statements like:

Panel1.Caption :=
Foo.Caption[Edit1.Text,
ctUpper];

item := Sender as TMenuItem;
Edit2.Text :=
Foo.Caption[item.Caption,
TCaptionType(item.Tag)];

In other words, you can use
properties instead of standalone
functions and procedures.

I find that bundling similar rou-
tines into a class, placed into its
own unit, really promotes code
re-use. If you instantiate Foo within
the Initialization section (see the
clFoo unit in Listing 1) then a Foo
entry in the Uses statement is all
that is needed in order to use the
property. Note that the function
GetCaption has two parameters
that correspond to the two indexes
of the property.

by Mike Orriss

Mike welcomes your
feedback and contributions

at mjo@compuserve.com
The best contribution
each month wins £25

Clean Screen Updates
I have finally found a solution to a
long-term simple requirement of
clean screen updating of TreeView
controls. I wanted to expand the
branches of a TreeView as follows:
the tree shown closed (using the
default cursor), the tree shown
closed (with the hourglass cursor)
and the tree shown open (using
the default cursor), but with no
interim screen changes (flickering,
full refresh or scrollbar creep)!

I looked at, but discarded, two
methods. LockWindowUpdate(Tree-
View.Handle) works but is a sledge-
hammer to crack a nut: it is too
resource intensive, can adversely
affect other windows and only
supports a single control. Using
TreeView.Items.BeginUpdate and
EndUpdate almost works, apart
from the dancing vertical scrollbar
and an annoying flash caused by
an erase and redraw of the entire
control...

unit clFoo;
interface
Uses SysUtils;
Type
TCaptionType = (ctNormal,ctAbbrev,ctUpper,ctCapital);
TFoo = class
protected
function GetCaption(const value: string; opt: TCaptionType): string;

public
property Caption[const value: string; opt: TCaptionType]: string
read GetCaption;

end;
var Foo: TFoo;
implementation
function TFoo.GetCaption(const value: string;
opt: TCaptionType): string;

begin
if value='' then
Result := ''

else begin
case opt of

ctNormal: Result := value;
ctAbbrev: Result := Copy(value,1,8);
ctUpper: Result := Uppercase(value);

ctCapital: Result := UpCase(value[1])+Copy(value,2,255);
end;

end;
end;
initialization
Foo := TFoo.Create;

finalization
Foo.Free;

end.

➤ Listing 1

60 The Delphi Magazine Issue 30

Searching in DTopics I found
some code that worked (thanks are
due to Jeff Johnson) and I modified
it to build the TLockWindow class as a
generic solution to manage all
screen updating.

Basically, the class holds a TList
of locked TWinControls and all Lock
and Unlock calls are reference
counted. The screen cursor is
saved when the first lock is made
and reset when the TList is emp-
tied. Note that attempting to
unlock a control not held in the
TList does nothing (so that calling
UnlockAll does not cause logic
problems). TLockWindow has just
three methods: see Listing 2. As the

class manages the cursor, ctl=nil
is permitted and this will just refer-
ence count changes between
crHourGlass and the cursor value at
the time of the first lock.

In order to expand a TreeView
(assuming that lckwin is an
instance of TLockWindow) you’d call:

lckwin.Lock(TreeView1.Parent);

try

TreeView1.Items.GetFirstNode.Expand(

True);

Finally

lckwin.Unlock(TreeView1.Parent);

End;

Note that I call the TreeView’s
parent in order to immobilise that
pesky scrollbar!

A Difference Engine
Check out the file DIFFM133.ZIP on
this month’s diskette (in directory
DIFFM133) which contains DIFF.EXE
and its Delphi source code. The
program takes two versions of a
file, let’s call them FileA and FileB,
and generates a difference file
FileAB. Subsequently, you can
regenerate FileB using FileA and
FileAB. Data integrity is checked
using a CRC32 algorithm, opti-
mised for speed and designed for
working with huge files (50Mb
to100Mb isn’t a problem).

This program intrigued me. The
source code takes a bit of under-
standing (there are virtually no
comments) but the method is
quite elegant. The difference file

➤ Listing 2

unit clLockWindow;
interface
uses Windows,Classes,Forms,Controls,Messages;
type
TLockedItem = Class
private
fControl: TWinControl;
fHandle: THandle;
fRefCount: integer;

protected
procedure SetLock; virtual;
procedure ResetLock; virtual;

public
constructor Create(AControl: TWinControl);
destructor Destroy; override;
property Control: TWinControl read fControl;
property RefCount: integer
read fRefCount write fRefCount;

end;
TLockWindow = Class
private
fList: TList;
fCursor: TCursor;

protected
procedure DeleteLock(index: integer); virtual;
procedure SetCursor; virtual;
procedure ResetCursor; virtual;
function UpdateCount(index,delta: integer): Integer;
virtual;

public
constructor Create; virtual;
destructor Destroy; override;
function IndexOf(Item: Pointer): Integer; virtual;
procedure Lock(AControl: TWinControl); virtual;
procedure Unlock(AControl: TWinControl); virtual;
procedure UnlockAll; virtual;

end;
implementation
constructor TLockedItem.Create(AControl: TWinControl);
begin
inherited Create;
fControl := AControl;
if fControl=nil then fHandle := 0
else fHandle := fControl.Handle;
SetLock;

end;
destructor TLockedItem.Destroy;
begin
ResetLock;
inherited Destroy;

end;
procedure TLockedItem.SetLock;
begin
if fHandle <> 0 then
SendMessage(fHandle,WM_SETREDRAW,0,0);

fRefCount := 1;
end;
procedure TLockedItem.ResetLock;
begin
if fHandle <> 0 then begin
SendMessage(fHandle,WM_SETREDRAW,1,0);
RedrawWindow(fHandle,nil,0,RDW_FRAME+RDW_INVALIDATE
+RDW_ALLCHILDREN+RDW_NOINTERNALPAINT);

end;
end;

constructor TLockWindow.Create;
begin
inherited Create;
fList := TList.Create;

end;
destructor TLockWindow.Destroy;
begin
UnlockAll;
fList.Free;
inherited Destroy;

end;
procedure TLockWindow.SetCursor;
begin
fCursor := Screen.Cursor;
Screen.Cursor := crHourGlass;

end;
procedure TLockWindow.ResetCursor;
begin
Screen.Cursor := fCursor;

end;
function TLockWindow.UpdateCount(index,delta: integer):
Integer;

var item: TLockedItem;
begin
item := TLockedItem(fList[index]);
item.RefCount := item.RefCount+delta;
Result := item.RefCount;

end;
function TLockWindow.IndexOf(Item: Pointer): Integer;
begin
for Result := 0 to fList.Count-1 do
if TLockedItem(fList[Result]).Control=Item then exit;

Result := -1;
end;
procedure TLockWindow.Lock(AControl: TWinControl);
var ix: integer;
begin
if fList.Count=0 then SetCursor;
ix := IndexOf(AControl);
if ix < 0 then
fList.Add(TLockedItem.Create(AControl))

else
UpdateCount(ix,1);

end;
procedure TLockWindow.DeleteLock(index: integer);
begin
TLockedItem(fList[index]).Free;
fList.Delete(index);
if fList.Count=0 then ResetCursor;

end;
procedure TLockWindow.Unlock(AControl: TWinControl);
var ix: integer;
begin
ix := IndexOf(AControl);
if (0 <= ix) and (UpdateCount(ix,-1) < 1) then
DeleteLock(ix);

end;
procedure TLockWindow.UnlockAll;
var ix: integer;
begin
for ix := fList.Count-1 downto 0 do DeleteLock(ix);

end;
end.

February 1998 The Delphi Magazine 61

Size
Zipped
Size

Time
taken
(seconds)

Size
Saved %

E1 648K 230K

E2 656K 234K

E-10 281K 138K 3 41

E-25 (default) 269K 135K 4 42

E-100 258K 131K 8 44

E-1000 251K 129K 33 45

P1 15.2M 151K

P2 15.6M 285K

P-10 6.1M 269K 12 6

P-25 (default) 6.1M 263K 16 8

P-100 6.0M 262K 20 8

P-1000 6.0M 255K 75 10

S1 52622 9068

S2 53004 9157

S-10 537 476 < 1 95

S-25 518 466 < 1 95

S-100 487 456 < 1 95

S-1000 483 455 < 1 95

➤ Table 1

consists of records containing a
mixture of new data from FileB and
references to position/length of
data held in FileA.

In order to create FileAB, FileA
and FileB are processed via 2Mb
buffers. For each buffer, a hash
table is first built from FileA. For
each byte, a hash value is calcu-
lated from it and the two following
bytes. If the hash value differs from
the previous byte, an entry is
stored in the hash table, chaining
any previous values via a hash list.
So, for any set of three bytes in
FileB all possible matching posi-
tions in FileA are available via the
hash value of the first byte and the
hash list. The program has a com-
pression factor parameter that
varies from 10 to 1000 and this
governs how many entries are
checked for each byte in the hash
list. For a given byte in FileB, its
hash value is calculated, and for
each hash list entry checked an
assembler compare function
returns the number of matching
bytes. The position matching the
largest number of bytes is used to

write an output reference, unless
the match is less than 20 bytes
when the FileB data is written as is.

The regeneration of FileB from
FileA and FileAB is very simple in
comparison, just a question of
rebuilding via the FileAB records.

I was interested in the compres-
sion capability and speed, particu-
larly when I realised the internal
methods were stream-based and
thus very suitable for using within
applications on the fly: a nice way
to hold previous versions of files.
Table 1 shows the results of my
tests. PKZIP will compress differ-
ence files and so my percent saving
is based on the comparison of the
zipped sizes of FileAB and FileB.

E1 and E2 are two versions of a
Delphi application, with a suitable
number of changes to represent a
Version 0.01 upgrade. E-10 through
E-1000 show the difference made
by using different compression
factors. Ship out E1 to your paid
customers and subsequently put
E-25 on the web: it’s no use unless
you possess E1 and the CRC check-
ing makes it absolutely safe. Using

an installation utility (like Wise)
that supports post file processing,
you could hide the use of DIFF.EXE
and make it all user-transparent.

P1 and P2 are two versions of a
cumulative pricing list in main-
frame 132 byte per line format,
hence the incredible Zip compres-
sion. DIFF.EXE does not perform
well on this type of file. S1 and S2
are two Delphi .PAS files, quite a
few small changes apart. Here DIFF
really comes into its own and I was
really surprised by the speed.

I also tried DIFF on the NTR file
created by my forthcoming Note-
Tree application. The file uses OLE
structured storage and stores RTF
files compressed with the zlib
routines (in the info\extras\zlib
folder on your Delphi 3 CD-ROM). I
was very surprised to find a 90%
saving, compared with less than
10% using zip: there is no longer
any excuse and I must support
saving multiple versions of files!

Mike Orriss runs 3K Computer
Consultancy in Staffordshire, UK.

	Indexed Properties
	Clean Screen Updates
	A Difference Engine

